Nuprl Lemma : exp-divides-exp
∀x,y:ℤ. (x | y
⇐⇒ ∀n:ℕ+. (x^n | y^n))
Proof
Definitions occuring in Statement :
divides: b | a
,
exp: i^n
,
nat_plus: ℕ+
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
rev_implies: P
⇐ Q
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
uimplies: b supposing a
,
guard: {T}
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
exp: i^n
,
top: Top
Lemmas referenced :
one-mul,
mul-commutes,
primrec1_lemma,
less_than_wf,
assoced_transitivity,
assoced_weakening,
exp_functionality_wrt_assoced,
assoced_functionality_wrt_assoced,
gcd_wf,
gcd-exp,
divides-iff-gcd-assoced,
nat_plus_subtype_nat,
exp_wf2,
all_wf,
divides_wf,
nat_plus_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
independent_pairFormation,
cut,
lemma_by_obid,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality,
applyEquality,
because_Cache,
intEquality,
dependent_functionElimination,
productElimination,
independent_functionElimination,
independent_isectElimination,
dependent_set_memberEquality,
natural_numberEquality,
introduction,
imageMemberEquality,
baseClosed,
isect_memberEquality,
voidElimination,
voidEquality
Latex:
\mforall{}x,y:\mBbbZ{}. (x | y \mLeftarrow{}{}\mRightarrow{} \mforall{}n:\mBbbN{}\msupplus{}. (x\^{}n | y\^{}n))
Date html generated:
2018_05_21-PM-01_10_45
Last ObjectModification:
2018_01_28-PM-02_03_57
Theory : num_thy_1
Home
Index