Nuprl Lemma : exp-divides-exp
∀x,y:ℤ.  (x | y 
⇐⇒ ∀n:ℕ+. (x^n | y^n))
Proof
Definitions occuring in Statement : 
divides: b | a
, 
exp: i^n
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
guard: {T}
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
exp: i^n
, 
top: Top
Lemmas referenced : 
one-mul, 
mul-commutes, 
primrec1_lemma, 
less_than_wf, 
assoced_transitivity, 
assoced_weakening, 
exp_functionality_wrt_assoced, 
assoced_functionality_wrt_assoced, 
gcd_wf, 
gcd-exp, 
divides-iff-gcd-assoced, 
nat_plus_subtype_nat, 
exp_wf2, 
all_wf, 
divides_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
intEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
introduction, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}x,y:\mBbbZ{}.    (x  |  y  \mLeftarrow{}{}\mRightarrow{}  \mforall{}n:\mBbbN{}\msupplus{}.  (x\^{}n  |  y\^{}n))
Date html generated:
2018_05_21-PM-01_10_45
Last ObjectModification:
2018_01_28-PM-02_03_57
Theory : num_thy_1
Home
Index