Nuprl Lemma : exp-minusone-2n-add
∀[n,k:ℕ].  ((-1)^((2 * n) + k) = (-1)^k ∈ ℤ)
Proof
Definitions occuring in Statement : 
exp: i^n, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
multiply: n * m, 
add: n + m, 
minus: -n, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
nat: ℕ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
equal_wf, 
exp_wf2, 
exp-minusone, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
iff_weakening_equal, 
add-commutes, 
ifthenelse_wf, 
eq_int_wf, 
mod2-add2n
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
equalitySymmetry, 
applyEquality, 
thin, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
intEquality, 
hypothesisEquality, 
minusEquality, 
natural_numberEquality, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
multiplyEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
productElimination, 
Error :inhabitedIsType, 
axiomEquality, 
Error :isectIsTypeImplies
Latex:
\mforall{}[n,k:\mBbbN{}].    ((-1)\^{}((2  *  n)  +  k)  =  (-1)\^{}k)
Date html generated:
2019_06_20-PM-02_31_03
Last ObjectModification:
2019_01_22-PM-00_42_47
Theory : num_thy_1
Home
Index