Nuprl Lemma : fadd_wf

[n,m,k:ℕ]. ∀[f:ℕn ⟶ ℕm]. ∀[g:ℕn ⟶ ℕ1].  (fadd(f;g) ∈ ℕn ⟶ ℕk)


Proof




Definitions occuring in Statement :  fadd: fadd(f;g) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fadd: fadd(f;g) subtype_rel: A ⊆B int_seg: {i..j-} nat: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a guard: {T} lelt: i ≤ j < k ge: i ≥  all: x:A. B[x] prop: decidable: Dec(P) or: P ∨ Q false: False not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  add-member-int_seg1 int_seg_wf int_seg_subtype subtract_wf int_seg_properties nat_properties decidable__le lelt_wf full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf itermSubtract_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_wf intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis setElimination rename natural_numberEquality addEquality productElimination independent_isectElimination because_Cache independent_pairFormation equalityTransitivity equalitySymmetry applyLambdaEquality dependent_functionElimination functionExtensionality dependent_set_memberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality axiomEquality Error :functionIsType,  Error :universeIsType,  functionEquality Error :inhabitedIsType

Latex:
\mforall{}[n,m,k:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m].  \mforall{}[g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}k  +  1].    (fadd(f;g)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m  +  k)



Date html generated: 2019_06_20-PM-02_28_58
Last ObjectModification: 2018_09_26-PM-05_50_50

Theory : num_thy_1


Home Index