Nuprl Lemma : fadd_wf
∀[n,m,k:ℕ]. ∀[f:ℕn ⟶ ℕm]. ∀[g:ℕn ⟶ ℕk + 1].  (fadd(f;g) ∈ ℕn ⟶ ℕm + k)
Proof
Definitions occuring in Statement : 
fadd: fadd(f;g)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fadd: fadd(f;g)
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
add-member-int_seg1, 
int_seg_wf, 
int_seg_subtype, 
subtract_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
lelt_wf, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_wf, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
natural_numberEquality, 
addEquality, 
productElimination, 
independent_isectElimination, 
because_Cache, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_functionElimination, 
functionExtensionality, 
dependent_set_memberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
Error :functionIsType, 
Error :universeIsType, 
functionEquality, 
Error :inhabitedIsType
Latex:
\mforall{}[n,m,k:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m].  \mforall{}[g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}k  +  1].    (fadd(f;g)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m  +  k)
Date html generated:
2019_06_20-PM-02_28_58
Last ObjectModification:
2018_09_26-PM-05_50_50
Theory : num_thy_1
Home
Index