Nuprl Lemma : gcd-lcm-absorption

[n,m:ℕ].  (gcd(n;lcm(n;m)) n ∈ ℤ)


Proof




Definitions occuring in Statement :  lcm: lcm(a;b) gcd: gcd(a;b) nat: uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B all: x:A. B[x] nat: implies:  Q prop:
Lemmas referenced :  nat_wf lcm_wf_nat divides_reflexivity divides_wf lcm_wf gcd-unique-nat lcm-is-lcm-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut equalitySymmetry hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache dependent_functionElimination setElimination rename independent_pairFormation productElimination lambdaFormation intEquality independent_functionElimination

Latex:
\mforall{}[n,m:\mBbbN{}].    (gcd(n;lcm(n;m))  =  n)



Date html generated: 2016_05_14-PM-09_25_48
Last ObjectModification: 2015_12_26-PM-08_02_52

Theory : num_thy_1


Home Index