Nuprl Lemma : nondecreasing_wf

[k:ℕ]. ∀[f:ℕk ⟶ ℤ].  (nondecreasing(f;k) ∈ ℙ)


Proof




Definitions occuring in Statement :  nondecreasing: nondecreasing(f;k) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nondecreasing: nondecreasing(f;k) nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: uiff: uiff(P;Q) subtract: m so_apply: x[s]
Lemmas referenced :  nat_wf int_formula_prop_le_lemma intformle_wf decidable__le add-member-int_seg2 lelt_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties le_wf subtract_wf int_seg_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality applyEquality dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    (nondecreasing(f;k)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-09_29_51
Last ObjectModification: 2016_01_14-PM-11_31_14

Theory : num_thy_1


Home Index