Nuprl Lemma : odd-implies-succ-two-times
∀n:ℕ. ((↑isOdd(n)) 
⇒ (∃k:ℕ. (n = ((2 * k) + 1) ∈ ℤ)))
Proof
Definitions occuring in Statement : 
isOdd: isOdd(n)
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
equal_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermMultiply_wf, 
itermAdd_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
assert-isOdd, 
nat_wf, 
isOdd_wf, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
addEquality, 
multiplyEquality
Latex:
\mforall{}n:\mBbbN{}.  ((\muparrow{}isOdd(n))  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}.  (n  =  ((2  *  k)  +  1))))
Date html generated:
2016_05_14-PM-04_23_50
Last ObjectModification:
2016_01_14-PM-11_38_52
Theory : num_thy_1
Home
Index