Nuprl Lemma : same-parity-implies-even-odd

n,m:ℤ.  ((↑same-parity(n;m))  (((↑isEven(n)) ∧ (↑isEven(m))) ∨ ((↑isOdd(n)) ∧ (↑isOdd(m)))))


Proof




Definitions occuring in Statement :  same-parity: same-parity(n;m) isEven: isEven(n) isOdd: isOdd(n) assert: b all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q same-parity: same-parity(n;m) member: t ∈ T uall: [x:A]. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a assert: b ifthenelse: if then else fi  or: P ∨ Q cand: c∧ B true: True iff: ⇐⇒ Q prop: rev_implies:  Q sq_type: SQType(T) guard: {T} bfalse: ff exists: x:A. B[x] bnot: ¬bb false: False
Lemmas referenced :  isEven_wf bool_wf eqtt_to_assert subtype_base_sq bool_subtype_base iff_imp_equal_bool btrue_wf assert_wf true_wf isOdd_wf eqff_to_assert equal_wf bool_cases_sqequal assert-bnot odd-iff-not-even false_wf same-parity_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule inlFormation natural_numberEquality independent_pairFormation instantiate cumulativity dependent_functionElimination independent_functionElimination productEquality dependent_pairFormation promote_hyp because_Cache voidElimination inrFormation intEquality

Latex:
\mforall{}n,m:\mBbbZ{}.    ((\muparrow{}same-parity(n;m))  {}\mRightarrow{}  (((\muparrow{}isEven(n))  \mwedge{}  (\muparrow{}isEven(m)))  \mvee{}  ((\muparrow{}isOdd(n))  \mwedge{}  (\muparrow{}isOdd(m)))))



Date html generated: 2017_04_17-AM-09_43_36
Last ObjectModification: 2017_02_27-PM-05_38_14

Theory : num_thy_1


Home Index