Nuprl Lemma : equal-partial

[T:Type]. ∀[x,y:partial(T)].  uiff(x y ∈ partial(T);uiff((x)↓;(y)↓) ∧ ((x)↓  (x y ∈ T))) supposing value-type(T)


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) has-value: (a)↓ uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] implies:  Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q member: t ∈ T has-value: (a)↓ implies:  Q prop: respects-equality: respects-equality(S;T) all: x:A. B[x] cand: c∧ B squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q label: ...$L... t true: True partial: partial(T) quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] base-partial: base-partial(T) so_apply: x[s1;s2] equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) per-partial: per-partial(T;x;y)
Lemmas referenced :  has-value_wf-partial respects-equality-partial partial_wf value-type_wf istype-universe termination squash_wf subtype_rel_self iff_weakening_equal equal_wf true_wf termination-equality quotient-member-eq per-partial_wf per-partial-equiv_rel base-partial_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  independent_pairFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality Error :isect_memberEquality_alt,  isectElimination hypothesisEquality axiomSqleEquality hypothesis Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :lambdaEquality_alt,  dependent_functionElimination axiomEquality Error :functionIsTypeImplies,  Error :equalityIstype,  because_Cache Error :productIsType,  Error :isectIsType,  Error :universeIsType,  extract_by_obid independent_isectElimination Error :functionIsType,  independent_functionElimination instantiate universeEquality Error :lambdaFormation_alt,  applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed promote_hyp natural_numberEquality pointwiseFunctionalityForEquality pertypeElimination setElimination rename sqequalBase

Latex:
\mforall{}[T:Type]
    \mforall{}[x,y:partial(T)].    uiff(x  =  y;uiff((x)\mdownarrow{};(y)\mdownarrow{})  \mwedge{}  ((x)\mdownarrow{}  {}\mRightarrow{}  (x  =  y)))  supposing  value-type(T)



Date html generated: 2019_06_20-PM-00_34_01
Last ObjectModification: 2018_11_23-PM-01_15_52

Theory : partial_1


Home Index