Nuprl Lemma : disjoint-quotient_subtype

[A,B:Type].
  ∀[E:(A B) ⟶ (A B) ⟶ ℙ]
    (x,y:A B//E[x;y]) ⊆(a1,a2:A//E[inl a1;inl a2] (b1,b2:B//E[inr b1 ;inr b2 ])) 
    supposing EquivRel(A B;x,y.E[x;y]) 
  supposing ¬(A ∧ B)


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s1;s2] not: ¬A and: P ∧ Q function: x:A ⟶ B[x] inr: inr  inl: inl x union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] sym: Sym(T;x,y.E[x; y]) implies:  Q prop: so_apply: x[s1;s2] trans: Trans(T;x,y.E[x; y]) subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] quotient: x,y:A//B[x; y] guard: {T} not: ¬A cand: c∧ B false: False
Lemmas referenced :  quotient_wf quotient-member-eq equal_wf equal-wf-base equiv_rel_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution independent_pairFormation productElimination thin promote_hyp lambdaFormation hypothesisEquality applyEquality functionExtensionality unionEquality cumulativity inlEquality inrEquality lambdaEquality pointwiseFunctionalityForEquality extract_by_obid isectElimination sqequalRule independent_isectElimination hypothesis pertypeElimination equalityTransitivity equalitySymmetry because_Cache rename unionElimination dependent_functionElimination independent_functionElimination productEquality universeEquality axiomEquality isect_memberEquality functionEquality voidElimination

Latex:
\mforall{}[A,B:Type].
    \mforall{}[E:(A  +  B)  {}\mrightarrow{}  (A  +  B)  {}\mrightarrow{}  \mBbbP{}]
        (x,y:A  +  B//E[x;y])  \msubseteq{}r  (a1,a2:A//E[inl  a1;inl  a2]  +  (b1,b2:B//E[inr  b1  ;inr  b2  ])) 
        supposing  EquivRel(A  +  B;x,y.E[x;y]) 
    supposing  \mneg{}(A  \mwedge{}  B)



Date html generated: 2017_04_14-AM-07_39_55
Last ObjectModification: 2017_02_27-PM-03_11_18

Theory : quot_1


Home Index