Nuprl Lemma : disjoint-quotient_subtype
∀[A,B:Type].
  ∀[E:(A + B) ⟶ (A + B) ⟶ ℙ]
    (x,y:A + B//E[x;y]) ⊆r (a1,a2:A//E[inl a1;inl a2] + (b1,b2:B//E[inr b1 inr b2 ])) 
    supposing EquivRel(A + B;x,y.E[x;y]) 
  supposing ¬(A ∧ B)
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
not: ¬A
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
inr: inr x 
, 
inl: inl x
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
trans: Trans(T;x,y.E[x; y])
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
quotient: x,y:A//B[x; y]
, 
guard: {T}
, 
not: ¬A
, 
cand: A c∧ B
, 
false: False
Lemmas referenced : 
quotient_wf, 
quotient-member-eq, 
equal_wf, 
equal-wf-base, 
equiv_rel_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
independent_pairFormation, 
productElimination, 
thin, 
promote_hyp, 
lambdaFormation, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
unionEquality, 
cumulativity, 
inlEquality, 
inrEquality, 
lambdaEquality, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
independent_isectElimination, 
hypothesis, 
pertypeElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
rename, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
universeEquality, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
voidElimination
Latex:
\mforall{}[A,B:Type].
    \mforall{}[E:(A  +  B)  {}\mrightarrow{}  (A  +  B)  {}\mrightarrow{}  \mBbbP{}]
        (x,y:A  +  B//E[x;y])  \msubseteq{}r  (a1,a2:A//E[inl  a1;inl  a2]  +  (b1,b2:B//E[inr  b1  ;inr  b2  ])) 
        supposing  EquivRel(A  +  B;x,y.E[x;y]) 
    supposing  \mneg{}(A  \mwedge{}  B)
Date html generated:
2017_04_14-AM-07_39_55
Last ObjectModification:
2017_02_27-PM-03_11_18
Theory : quot_1
Home
Index