Nuprl Lemma : AF-induction4
∀T:Type. ∀R:T ⟶ T ⟶ ℙ.
∀Q:T ⟶ ℙ. TI(T;x,y.R[x;y];t.Q[t]) supposing ∃R':T ⟶ T ⟶ ℙ. (AFx,y:T.R'[x;y] ∧ (∀x,y:T. (R+[x;y]
⇒ (¬R'[x;y]))))
Proof
Definitions occuring in Statement :
rel_plus: R+
,
almost-full: AFx,y:T.R[x; y]
,
TI: TI(T;x,y.R[x; y];t.Q[t])
,
uimplies: b supposing a
,
prop: ℙ
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
and: P ∧ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
trans: Trans(T;x,y.E[x; y])
,
infix_ap: x f y
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
and: P ∧ Q
,
exists: ∃x:A. B[x]
,
cand: A c∧ B
,
not: ¬A
,
false: False
,
squash: ↓T
,
true: True
Lemmas referenced :
rel_plus-TI,
AF-induction3,
rel_plus_wf,
rel_plus_trans,
exists_wf,
almost-full_wf,
all_wf,
not_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
isect_memberFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality,
applyEquality,
functionExtensionality,
cumulativity,
independent_functionElimination,
isectElimination,
because_Cache,
hypothesis,
universeEquality,
independent_isectElimination,
functionEquality,
instantiate,
productEquality,
productElimination,
dependent_pairFormation,
independent_pairFormation,
voidElimination,
addLevel,
hyp_replacement,
equalitySymmetry,
levelHypothesis,
imageElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed
Latex:
\mforall{}T:Type. \mforall{}R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}.
\mforall{}Q:T {}\mrightarrow{} \mBbbP{}. TI(T;x,y.R[x;y];t.Q[t])
supposing \mexists{}R':T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}. (AFx,y:T.R'[x;y] \mwedge{} (\mforall{}x,y:T. (R\msupplus{}[x;y] {}\mRightarrow{} (\mneg{}R'[x;y]))))
Date html generated:
2016_10_21-AM-10_50_09
Last ObjectModification:
2016_07_12-AM-05_54_30
Theory : relations2
Home
Index