Nuprl Lemma : rel_plus_idempotent
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (R+ x y 
⇐⇒ R++ x y)
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
rel_plus: R+
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
rel_exp: R^n
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
cand: A c∧ B
, 
nat: ℕ
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
btrue: tt
Lemmas referenced : 
rel_plus_trans, 
rel_plus_minimal, 
le_wf, 
false_wf, 
infix_ap_wf, 
nat_plus_subtype_nat, 
rel_exp_wf, 
less_than_wf, 
rel_plus_monotone, 
rel_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
applyEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
introduction, 
imageMemberEquality, 
baseClosed, 
productEquality, 
instantiate, 
because_Cache, 
dependent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    (R\msupplus{}  x  y  \mLeftarrow{}{}\mRightarrow{}  R\msupplus{}\msupplus{}  x  y)
Date html generated:
2016_05_14-PM-03_55_18
Last ObjectModification:
2016_01_14-PM-11_10_44
Theory : relations2
Home
Index