Nuprl Lemma : WfdSpread_wf

[Pos:Type]. ∀[Mv:Pos ⟶ Type].  (WfdSpread(Pos;a.Mv[a]) ∈ Type)


Proof




Definitions occuring in Statement :  WfdSpread: WfdSpread(Pos;a.Mv[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T WfdSpread: WfdSpread(Pos;a.Mv[a]) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] exists: x:A. B[x]
Lemmas referenced :  Spread_wf all_wf nat_wf MoveChoice_wf squash_wf exists_wf resigned_wf subgame_wf subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality applyEquality because_Cache hypothesis functionEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation lambdaFormation axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality

Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].    (WfdSpread(Pos;a.Mv[a])  \mmember{}  Type)



Date html generated: 2016_05_14-PM-03_56_46
Last ObjectModification: 2015_12_26-PM-05_48_15

Theory : spread


Home Index