Nuprl Lemma : subgame_wf

[Pos:Type]. ∀[Mv:Pos ⟶ Type]. ∀[n:ℕ]. ∀[g:Spread(Pos;a.Mv[a])]. ∀[p:ℕn ⟶ MoveChoice(Pos;a.Mv[a])].
  (subgame(g;p;n) ∈ Spread(Pos;a.Mv[a])?)


Proof




Definitions occuring in Statement :  subgame: subgame(g;p;n) MoveChoice: MoveChoice(Pos;a.Mv[a]) Spread: Spread(Pos;a.Mv[a]) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subgame: subgame(g;p;n) ifthenelse: if then else fi  eq_int: (i =z j) btrue: tt decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k nequal: a ≠ b ∈  subtract: m le: A ≤ B less_than: a < b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf MoveChoice_wf Spread_wf unit_wf2 decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int spread-ext subtype_rel_weakening add-member-int_seg2 lelt_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity applyEquality functionExtensionality inlEquality because_Cache unionElimination equalityElimination productElimination promote_hyp instantiate productEquality dependent_set_memberEquality inrEquality universeEquality

Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[g:Spread(Pos;a.Mv[a])].
\mforall{}[p:\mBbbN{}n  {}\mrightarrow{}  MoveChoice(Pos;a.Mv[a])].
    (subgame(g;p;n)  \mmember{}  Spread(Pos;a.Mv[a])?)



Date html generated: 2017_04_17-AM-09_28_21
Last ObjectModification: 2017_02_27-PM-05_30_17

Theory : spread


Home Index