Nuprl Lemma : b-union-equality-disjoint

A,B:Type. ∀a:A. ∀b:B.  ((¬A ⋂ B)  (a b ∈ (A ⋃ B))))


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 b-union: A ⋃ B all: x:A. B[x] not: ¬A implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B uall: [x:A]. B[x] bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 isect2: T1 ⋂ T2 member: t ∈ T false: False not: ¬A implies:  Q all: x:A. B[x] tunion: x:A.B[x] b-union: A ⋃ B pi2: snd(t) so_lambda: λ2x.t[x] so_apply: x[s] top: Top guard: {T} uimplies: supposing a pi1: fst(t) or: P ∨ Q sq_type: SQType(T) uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  istype-universe istype-void isect2_wf subtype_rel_b-union-right subtype_rel_b-union-left b-union_wf bool_wf bfalse_wf ifthenelse_wf pi2_wf top_wf istype-top pair-eta subtype_rel_product pi1_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot
Rules used in proof :  universeEquality instantiate Error :inhabitedIsType,  Error :functionIsType,  applyEquality isectElimination Error :universeIsType,  Error :equalityIstype,  because_Cache voidElimination extract_by_obid equalitySymmetry equalityTransitivity hypothesisEquality sqequalRule equalityElimination unionElimination isect_memberEquality introduction independent_functionElimination sqequalHypSubstitution hypothesis thin cut Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageEqInduction baseClosed Error :dependent_pairEquality_alt,  Error :lambdaEquality_alt,  Error :productIsType,  independent_pairEquality Error :isect_memberEquality_alt,  independent_isectElimination applyLambdaEquality dependent_functionElimination cumulativity productElimination

Latex:
\mforall{}A,B:Type.  \mforall{}a:A.  \mforall{}b:B.    ((\mneg{}A  \mcap{}  B)  {}\mRightarrow{}  (\mneg{}(a  =  b)))



Date html generated: 2019_06_20-PM-00_28_01
Last ObjectModification: 2019_01_02-PM-03_16_14

Theory : subtype_1


Home Index