Nuprl Lemma : shorten-tuple_wf

[L:Type List]. ∀[n:ℕ||L||]. ∀[x:tuple-type(L)].  (shorten-tuple(x;n) ∈ tuple-type(nth_tl(n;L)))


Proof




Definitions occuring in Statement :  shorten-tuple: shorten-tuple(x;n) tuple-type: tuple-type(L) length: ||as|| nth_tl: nth_tl(n;as) list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: top: Top int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  shorten-tuple-split-tuple int_seg_subtype_nat length_wf false_wf pi2_wf tuple-type_wf firstn_wf nth_tl_wf split-tuple_wf int_seg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality natural_numberEquality instantiate universeEquality hypothesis independent_isectElimination independent_pairFormation lambdaFormation isect_memberEquality voidElimination voidEquality setElimination rename lambdaEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}[L:Type  List].  \mforall{}[n:\mBbbN{}||L||].  \mforall{}[x:tuple-type(L)].    (shorten-tuple(x;n)  \mmember{}  tuple-type(nth\_tl(n;L)))



Date html generated: 2016_05_14-PM-03_58_37
Last ObjectModification: 2015_12_26-PM-07_21_43

Theory : tuples


Home Index