Nuprl Lemma : shorten-tuple_wf
∀[L:Type List]. ∀[n:ℕ||L||]. ∀[x:tuple-type(L)].  (shorten-tuple(x;n) ∈ tuple-type(nth_tl(n;L)))
Proof
Definitions occuring in Statement : 
shorten-tuple: shorten-tuple(x;n)
, 
tuple-type: tuple-type(L)
, 
length: ||as||
, 
nth_tl: nth_tl(n;as)
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
top: Top
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
shorten-tuple-split-tuple, 
int_seg_subtype_nat, 
length_wf, 
false_wf, 
pi2_wf, 
tuple-type_wf, 
firstn_wf, 
nth_tl_wf, 
split-tuple_wf, 
int_seg_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
natural_numberEquality, 
instantiate, 
universeEquality, 
hypothesis, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache
Latex:
\mforall{}[L:Type  List].  \mforall{}[n:\mBbbN{}||L||].  \mforall{}[x:tuple-type(L)].    (shorten-tuple(x;n)  \mmember{}  tuple-type(nth\_tl(n;L)))
Date html generated:
2016_05_14-PM-03_58_37
Last ObjectModification:
2015_12_26-PM-07_21_43
Theory : tuples
Home
Index