Nuprl Lemma : b_all-map

[A,B:Type].
  ∀f:A ⟶ B. ∀b:bag(A). ∀P:B ⟶ ℙ.  ((∀b:B. SqStable(P[b]))  (b_all(B;bag-map(f;b);x.P[x]) ⇐⇒ b_all(A;b;x.P[f x])))


Proof




Definitions occuring in Statement :  b_all: b_all(T;b;x.P[x]) bag-map: bag-map(f;bs) bag: bag(T) sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q b_all: b_all(T;b;x.P[x]) iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T exists: x:A. B[x] prop: squash: T so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B sq_stable: SqStable(P) guard: {T}
Lemmas referenced :  bag-member_wf equal_wf all_wf squash_wf exists_wf bag-member-map bag-map_wf iff_wf sq_stable_wf bag_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin applyEquality functionExtensionality hypothesisEquality cumulativity independent_functionElimination dependent_pairFormation productEquality introduction extract_by_obid isectElimination sqequalRule imageMemberEquality baseClosed lambdaEquality functionEquality addLevel productElimination impliesFunctionality allFunctionality independent_isectElimination allLevelFunctionality impliesLevelFunctionality because_Cache universeEquality imageElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A,B:Type].
    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}b:bag(A).  \mforall{}P:B  {}\mrightarrow{}  \mBbbP{}.
        ((\mforall{}b:B.  SqStable(P[b]))  {}\mRightarrow{}  (b\_all(B;bag-map(f;b);x.P[x])  \mLeftarrow{}{}\mRightarrow{}  b\_all(A;b;x.P[f  x])))



Date html generated: 2017_10_01-AM-08_55_13
Last ObjectModification: 2017_07_26-PM-04_37_10

Theory : bags


Home Index