Nuprl Lemma : bag-decomp_wf2

[T:Type]. ∀[bs:bag(T)].  (bag-decomp(bs) ∈ bag({p:T × bag(T)| bs ({fst(p)} (snd(p))) ∈ bag(T)} ))


Proof




Definitions occuring in Statement :  bag-decomp: bag-decomp(bs) bag-append: as bs single-bag: {x} bag: bag(T) uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] all: x:A. B[x] so_apply: x[s] uimplies: supposing a implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q pi1: fst(t) pi2: snd(t) squash: T true: True
Lemmas referenced :  true_wf squash_wf and_wf bag-member-decomp bag-member_wf pi2_wf pi1_wf single-bag_wf bag-append_wf equal_wf bag-decomp_wf bag_wf bag-settype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination independent_isectElimination lambdaFormation because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality productElimination dependent_set_memberEquality independent_pairFormation applyEquality setElimination rename setEquality imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    (bag-decomp(bs)  \mmember{}  bag(\{p:T  \mtimes{}  bag(T)|  bs  =  (\{fst(p)\}  +  (snd(p)))\}  ))



Date html generated: 2016_05_15-PM-02_55_05
Last ObjectModification: 2016_01_16-AM-08_39_58

Theory : bags


Home Index