Nuprl Lemma : bag-decomp_wf2
∀[T:Type]. ∀[bs:bag(T)]. (bag-decomp(bs) ∈ bag({p:T × bag(T)| bs = ({fst(p)} + (snd(p))) ∈ bag(T)} ))
Proof
Definitions occuring in Statement :
bag-decomp: bag-decomp(bs)
,
bag-append: as + bs
,
single-bag: {x}
,
bag: bag(T)
,
uall: ∀[x:A]. B[x]
,
pi1: fst(t)
,
pi2: snd(t)
,
member: t ∈ T
,
set: {x:A| B[x]}
,
product: x:A × B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
all: ∀x:A. B[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
prop: ℙ
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
pi1: fst(t)
,
pi2: snd(t)
,
squash: ↓T
,
true: True
Lemmas referenced :
true_wf,
squash_wf,
and_wf,
bag-member-decomp,
bag-member_wf,
pi2_wf,
pi1_wf,
single-bag_wf,
bag-append_wf,
equal_wf,
bag-decomp_wf,
bag_wf,
bag-settype
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
productEquality,
hypothesisEquality,
hypothesis,
sqequalRule,
lambdaEquality,
dependent_functionElimination,
independent_isectElimination,
lambdaFormation,
because_Cache,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
universeEquality,
productElimination,
dependent_set_memberEquality,
independent_pairFormation,
applyEquality,
setElimination,
rename,
setEquality,
imageElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[T:Type]. \mforall{}[bs:bag(T)]. (bag-decomp(bs) \mmember{} bag(\{p:T \mtimes{} bag(T)| bs = (\{fst(p)\} + (snd(p)))\} ))
Date html generated:
2016_05_15-PM-02_55_05
Last ObjectModification:
2016_01_16-AM-08_39_58
Theory : bags
Home
Index