Nuprl Lemma : bag-member-decomp
∀[T:Type]. ∀[bs:bag(T)]. ∀[x:T]. ∀[b:bag(T)].  uiff(<x, b> ↓∈ bag-decomp(bs);({x} + b) = bs ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-decomp: bag-decomp(bs)
, 
bag-member: x ↓∈ bs
, 
bag-append: as + bs
, 
single-bag: {x}
, 
bag: bag(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
bag-member: x ↓∈ bs
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
bag-decomp: bag-decomp(bs)
, 
cand: A c∧ B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
remove-nth: remove-nth(n;L)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
single-bag: {x}
, 
bag-append: as + bs
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
int_iseg: {i...j}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
subtract: n - m
, 
less_than: a < b
, 
le: A ≤ B
, 
nat: ℕ
, 
true: True
, 
ge: i ≥ j 
, 
l_member: (x ∈ l)
, 
less_than': less_than'(a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nth_tl: nth_tl(n;as)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
tl: tl(l)
, 
cons: [a / b]
Lemmas referenced : 
uiff_wf, 
bag-member_wf, 
bag_wf, 
bag-decomp_wf, 
equal_wf, 
bag-append_wf, 
single-bag_wf, 
list_wf, 
list-subtype-bag, 
permutation_wf, 
equal-wf-base, 
member-permutation, 
member_map, 
int_seg_wf, 
length_wf, 
upto_wf, 
remove-nth_wf, 
subtype_rel_product, 
member_wf, 
map_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
quotient-member-eq, 
permutation-equiv, 
cons_wf, 
permutation-cons, 
firstn_wf, 
nth_tl_wf, 
append_wf, 
length-append, 
length_firstn, 
subtype_rel_sets, 
lelt_wf, 
le_wf, 
length_of_cons_lemma, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
exists_wf, 
append_firstn_lastn_sq, 
subtype_rel_list, 
top_wf, 
add-member-int_seg2, 
subtract_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
firstn_decomp2, 
append_assoc_sq, 
squash_wf, 
true_wf, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
add-subtract-cancel, 
iff_weakening_equal, 
non_neg_length, 
less_than_wf, 
l_member_wf, 
member_upto, 
length_wf_nat, 
nat_properties, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
select_wf, 
and_wf, 
nat_wf, 
select_append_back, 
select-cons-hd, 
add_nat_wf, 
false_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
firstn_append, 
nth_tl-append, 
minus-one-mul, 
add-mul-special, 
zero-mul, 
add-zero, 
firstn_all, 
permutation_weakening, 
subtype_rel_self
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
cut, 
extract_by_obid, 
isectElimination, 
thin, 
productEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_pairEquality, 
sqequalRule, 
dependent_functionElimination, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
because_Cache, 
rename, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
axiomEquality, 
independent_functionElimination, 
universeEquality, 
isect_memberFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
setElimination, 
addEquality, 
intEquality, 
setEquality, 
unionElimination, 
int_eqEquality, 
computeAll, 
dependent_set_memberEquality, 
minusEquality, 
hyp_replacement, 
equalityElimination, 
promote_hyp, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    uiff(<x,  b>  \mdownarrow{}\mmember{}  bag-decomp(bs);(\{x\}  +  b)  =  bs)
Date html generated:
2017_10_01-AM-09_01_04
Last ObjectModification:
2017_07_26-PM-04_42_16
Theory : bags
Home
Index