Nuprl Lemma : bag-decomp_wf

[T:Type]. ∀[bs:bag(T)].  (bag-decomp(bs) ∈ bag(T × bag(T)))


Proof




Definitions occuring in Statement :  bag-decomp: bag-decomp(bs) bag: bag(T) uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  prop: implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B all: x:A. B[x] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] bag-decomp: bag-decomp(bs) and: P ∧ Q quotient: x,y:A//B[x; y] bag: bag(T) member: t ∈ T uall: [x:A]. B[x] exists: x:A. B[x] permutation: permutation(T;L1;L2) ge: i ≥  nat: sq_type: SQType(T) false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True squash: T remove-nth: remove-nth(n;L) int_iseg: {i...j} cand: c∧ B less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b inject: Inj(A;B;f) subtract: m respects-equality: respects-equality(S;T)
Lemmas referenced :  istype-universe upto_wf list-subtype-bag subtype_rel_product remove-nth_wf length_wf int_seg_wf map_wf permutation-equiv permutation_wf list_wf quotient-member-eq bag_wf length_wf_nat length_upto length-map int_term_value_constant_lemma itermConstant_wf int_seg_properties member_wf istype-less_than istype-le int_formula_prop_eq_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformeq_wf intformless_wf intformand_wf decidable__lt nat_properties le_wf set_subtype_base istype-nat int_subtype_base subtype_base_sq int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-int itermVar_wf intformle_wf intformnot_wf full-omega-unsat decidable__le le_weakening int_seg_subtype subtype_rel_dep_function map_permute_list permute_list_wf iff_weakening_equal subtype_rel_self true_wf squash_wf equal_wf permute_list_length inject_wf list_extensionality map-length select-map subtype_rel_list top_wf select-upto lelt_wf non_neg_length select_wf permute_list_select select_upto append_wf firstn_wf nth_tl_wf subtract_wf itermAdd_wf int_term_value_add_lemma decidable__equal_int itermSubtract_wf int_term_value_subtract_lemma length-append add_functionality_wrt_eq length_firstn length_nth_tl subtype_rel_sets_simple add_nat_wf int_seg_subtype_nat istype-false istype-void false_wf permutation_inversion lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf subtract_nat_wf nat_wf add-is-int-iff subtype-base-respects-equality change-equality-type not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 subtract-is-int-iff equal-wf-base equal-wf-T-base select-append le_int_wf bnot_wf uiff_transitivity assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int length_firstn_eq length_append select-firstn select-nth_tl zero-add select_nth_tl select_firstn respects-equality-list-bag respects-equality-trivial respects-equality-product respects-equality-list
Rules used in proof :  universeEquality instantiate isectIsTypeImplies isect_memberEquality_alt equalityTransitivity axiomEquality equalitySymmetry sqequalBase equalityIstype productIsType independent_functionElimination lambdaFormation_alt applyEquality natural_numberEquality dependent_functionElimination because_Cache independent_isectElimination universeIsType inhabitedIsType lambdaEquality_alt productElimination promote_hyp pertypeElimination sqequalRule hypothesis hypothesisEquality productEquality thin isectElimination extract_by_obid pointwiseFunctionalityForEquality sqequalHypSubstitution cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_pairFormation_alt Error :memTop,  independent_pairFormation applyLambdaEquality hyp_replacement closedConclusion baseApply dependent_set_memberEquality_alt cumulativity voidElimination int_eqEquality approximateComputation unionElimination rename setElimination baseClosed imageMemberEquality intEquality imageElimination functionIsType independent_pairEquality addEquality pointwiseFunctionality equalityElimination functionEquality minusEquality multiplyEquality functionExtensionality

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    (bag-decomp(bs)  \mmember{}  bag(T  \mtimes{}  bag(T)))



Date html generated: 2020_05_20-AM-08_02_56
Last ObjectModification: 2020_01_31-PM-03_36_11

Theory : bags


Home Index