Nuprl Lemma : map_permute_list

[A,B:Type]. ∀[f:B ⟶ A]. ∀[x:B List]. ∀[g:ℕ||x|| ⟶ ℕ||x||].  (map(f;(x g)) (map(f;x) g) ∈ (A List))


Proof




Definitions occuring in Statement :  permute_list: (L f) length: ||as|| map: map(f;as) list: List int_seg: {i..j-} uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q top: Top so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k nat: true: True ge: i ≥ 
Lemmas referenced :  equal_wf map_length permute_list_wf int_seg_wf length_wf iff_weakening_equal permute_list_length map_wf list_extensionality subtype_rel_dep_function int_seg_subtype false_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf int_seg_properties less_than_wf nat_wf list_wf map_length_nat lelt_wf decidable__lt intformless_wf int_formula_prop_less_lemma select_wf non_neg_length nat_properties length_wf_nat itermConstant_wf int_term_value_constant_lemma map_select permute_list_select
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination because_Cache hypothesis cumulativity hypothesisEquality functionExtensionality natural_numberEquality sqequalRule imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation lambdaFormation dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll setElimination rename functionEquality axiomEquality universeEquality dependent_set_memberEquality applyLambdaEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:B  {}\mrightarrow{}  A].  \mforall{}[x:B  List].  \mforall{}[g:\mBbbN{}||x||  {}\mrightarrow{}  \mBbbN{}||x||].    (map(f;(x  o  g))  =  (map(f;x)  o  g))



Date html generated: 2017_10_01-AM-08_38_29
Last ObjectModification: 2017_07_26-PM-04_27_01

Theory : list!


Home Index