Nuprl Lemma : select-nth_tl
∀[n,x:ℕ]. ∀[L:Top List]. (nth_tl(n;L)[x] ~ L[n + x])
Proof
Definitions occuring in Statement :
select: L[n]
,
nth_tl: nth_tl(n;as)
,
list: T List
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
top: Top
,
add: n + m
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
nth_tl: nth_tl(n;as)
,
le_int: i ≤z j
,
lt_int: i <z j
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
subtract: n - m
,
btrue: tt
,
decidable: Dec(P)
,
or: P ∨ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
sq_type: SQType(T)
,
guard: {T}
,
assert: ↑b
,
select: L[n]
,
nil: []
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
cons: [a / b]
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
list_wf,
top_wf,
nat_wf,
zero-add,
decidable__le,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
le_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_le_int,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
le_wf,
tl_wf,
list-cases,
reduce_tl_nil_lemma,
stuck-spread,
base_wf,
product_subtype_list,
reduce_tl_cons_lemma,
select-cons-tl,
decidable__lt,
itermAdd_wf,
int_term_value_add_lemma,
general_arith_equation1
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
sqequalAxiom,
because_Cache,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
promote_hyp,
instantiate,
cumulativity,
baseClosed,
hypothesis_subsumption,
addEquality
Latex:
\mforall{}[n,x:\mBbbN{}]. \mforall{}[L:Top List]. (nth\_tl(n;L)[x] \msim{} L[n + x])
Date html generated:
2017_04_17-AM-07_49_32
Last ObjectModification:
2017_02_27-PM-04_23_49
Theory : list_1
Home
Index