Nuprl Lemma : bagp_properties

[T:Type]. ∀[b:T Bag+].  (#(b) ≥ )


Proof




Definitions occuring in Statement :  bagp: Bag+ bag-size: #(bs) uall: [x:A]. B[x] ge: i ≥  natural_number: $n universe: Type
Definitions unfolded in proof :  bagp: Bag+ uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B ge: i ≥  sq_stable: SqStable(P) implies:  Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: le: A ≤ B nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  less_than_wf bag_wf set_wf nat_wf less_than'_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le bag-size_wf sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut setElimination thin rename lemma_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesisEquality hypothesis applyEquality because_Cache independent_functionElimination dependent_functionElimination unionElimination imageElimination productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageMemberEquality baseClosed independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b:T  Bag\msupplus{}].    (\#(b)  \mgeq{}  1  )



Date html generated: 2016_05_15-PM-02_26_26
Last ObjectModification: 2016_01_16-AM-08_56_28

Theory : bags


Home Index