Nuprl Lemma : l_all_implies_b_all
∀[A:Type]. ∀as:A List. ∀P:A ⟶ ℙ.  ((∀x,y:A.  Dec(x = y ∈ A)) 
⇒ (∀x∈as.P[x]) 
⇒ b_all(A;as;x.P[x]))
Proof
Definitions occuring in Statement : 
b_all: b_all(T;b;x.P[x])
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
b_all: b_all(T;b;x.P[x])
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
l_all_iff, 
l_member_wf, 
bag-member-list, 
bag-member_wf, 
list-subtype-bag, 
l_all_wf, 
all_wf, 
decidable_wf, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}as:A  List.  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x,y:A.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}x\mmember{}as.P[x])  {}\mRightarrow{}  b\_all(A;as;x.P[x]))
Date html generated:
2016_05_15-PM-02_41_55
Last ObjectModification:
2015_12_27-AM-09_40_06
Theory : bags
Home
Index