Nuprl Lemma : l_all_implies_b_all

[A:Type]. ∀as:A List. ∀P:A ⟶ ℙ.  ((∀x,y:A.  Dec(x y ∈ A))  (∀x∈as.P[x])  b_all(A;as;x.P[x]))


Proof




Definitions occuring in Statement :  b_all: b_all(T;b;x.P[x]) l_all: (∀x∈L.P[x]) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q b_all: b_all(T;b;x.P[x]) member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: iff: ⇐⇒ Q and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  l_all_iff l_member_wf bag-member-list bag-member_wf list-subtype-bag l_all_wf all_wf decidable_wf equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality applyEquality setElimination rename setEquality hypothesis productElimination independent_functionElimination because_Cache independent_isectElimination functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}as:A  List.  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x,y:A.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}x\mmember{}as.P[x])  {}\mRightarrow{}  b\_all(A;as;x.P[x]))



Date html generated: 2016_05_15-PM-02_41_55
Last ObjectModification: 2015_12_27-AM-09_40_06

Theory : bags


Home Index