Nuprl Lemma : sub-bag-cancel-right
∀[T:Type]. ∀b1,b2,b:bag(T).  (sub-bag(T;b1 + b;b2 + b) 
⇐⇒ sub-bag(T;b1;b2))
Proof
Definitions occuring in Statement : 
sub-bag: sub-bag(T;as;bs)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
sub-bag: sub-bag(T;as;bs)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
equal_wf, 
bag_wf, 
bag-append_wf, 
exists_wf, 
bag-append-comm, 
bag-append-assoc, 
bag-append-cancel, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
applyEquality, 
imageElimination, 
equalityUniverse, 
levelHypothesis, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}b1,b2,b:bag(T).    (sub-bag(T;b1  +  b;b2  +  b)  \mLeftarrow{}{}\mRightarrow{}  sub-bag(T;b1;b2))
Date html generated:
2017_10_01-AM-08_53_04
Last ObjectModification:
2017_07_26-PM-04_34_37
Theory : bags
Home
Index