Nuprl Lemma : sub-bag-size

[T:Type]. ∀[a,b:bag(T)].  #(a) ≤ #(b) supposing sub-bag(T;a;b)


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) bag-size: #(bs) bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sub-bag: sub-bag(T;as;bs) exists: x:A. B[x] top: Top all: x:A. B[x] decidable: Dec(P) or: P ∨ Q nat: guard: {T} so_lambda: λ2x.t[x] prop: so_apply: x[s] ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A and: P ∧ Q subtype_rel: A ⊆B le: A ≤ B
Lemmas referenced :  bag-size-append decidable__le bag-size_wf nat_properties set_wf le_wf satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_term_value_add_lemma int_formula_prop_wf less_than'_wf sub-bag_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis sqequalRule extract_by_obid isectElimination isect_memberEquality voidElimination voidEquality dependent_functionElimination because_Cache unionElimination cumulativity hypothesisEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality setElimination rename intEquality natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality independent_pairFormation computeAll hyp_replacement Error :applyLambdaEquality,  independent_pairEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a,b:bag(T)].    \#(a)  \mleq{}  \#(b)  supposing  sub-bag(T;a;b)



Date html generated: 2016_10_25-AM-10_38_06
Last ObjectModification: 2016_07_12-AM-06_51_45

Theory : bags


Home Index