Nuprl Lemma : subtype-bag-empty

[T:Type]. ∀[bs:bag(T)].  bs ∈ bag(Void) supposing #(bs) 0 ∈ ℤ


Proof




Definitions occuring in Statement :  bag-size: #(bs) bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n int: void: Void universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B nat:
Lemmas referenced :  bag_wf nat_wf bag-size_wf equal_wf empty-bag_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermConstant_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le bag-size-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination dependent_functionElimination equalityTransitivity hypothesis equalitySymmetry unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll axiomEquality applyEquality setElimination rename because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    bs  \mmember{}  bag(Void)  supposing  \#(bs)  =  0



Date html generated: 2016_05_15-PM-02_35_07
Last ObjectModification: 2016_01_16-AM-08_52_02

Theory : bags


Home Index