Nuprl Lemma : subtype_rel_unordered-combination

[A,B:Type].  ∀n:ℕUnorderedCombination(n;A) ⊆UnorderedCombination(n;B) supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  unordered-combination: UnorderedCombination(n;T) strong-subtype: strong-subtype(A;B) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a subtype_rel: A ⊆B unordered-combination: UnorderedCombination(n;T) and: P ∧ Q strong-subtype: strong-subtype(A;B) cand: c∧ B prop: nat: bag-no-repeats: bag-no-repeats(T;bs) squash: T exists: x:A. B[x] guard: {T} implies:  Q
Lemmas referenced :  subtype_rel_bag bag-no-repeats_wf equal_wf bag-size_wf nat_wf unordered-combination_wf strong-subtype_wf subtype_rel_list bag_wf list-subtype-bag no_repeats_wf equal_functionality_wrt_subtype_rel2 no_repeats-strong-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lambdaEquality sqequalHypSubstitution setElimination thin rename productElimination dependent_set_memberEquality hypothesisEquality applyEquality extract_by_obid isectElimination independent_isectElimination hypothesis sqequalRule independent_pairFormation productEquality cumulativity intEquality axiomEquality dependent_functionElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality imageElimination dependent_pairFormation imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[A,B:Type].
    \mforall{}n:\mBbbN{}.  UnorderedCombination(n;A)  \msubseteq{}r  UnorderedCombination(n;B)  supposing  strong-subtype(A;B)



Date html generated: 2017_10_01-AM-09_05_34
Last ObjectModification: 2017_07_26-PM-04_45_45

Theory : bags


Home Index