Nuprl Lemma : subtype_rel_unordered-combination
∀[A,B:Type].  ∀n:ℕ. UnorderedCombination(n;A) ⊆r UnorderedCombination(n;B) supposing strong-subtype(A;B)
Proof
Definitions occuring in Statement : 
unordered-combination: UnorderedCombination(n;T), 
strong-subtype: strong-subtype(A;B), 
nat: ℕ, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
unordered-combination: UnorderedCombination(n;T), 
and: P ∧ Q, 
strong-subtype: strong-subtype(A;B), 
cand: A c∧ B, 
prop: ℙ, 
nat: ℕ, 
bag-no-repeats: bag-no-repeats(T;bs), 
squash: ↓T, 
exists: ∃x:A. B[x], 
guard: {T}, 
implies: P ⇒ Q
Lemmas referenced : 
subtype_rel_bag, 
bag-no-repeats_wf, 
equal_wf, 
bag-size_wf, 
nat_wf, 
unordered-combination_wf, 
strong-subtype_wf, 
subtype_rel_list, 
bag_wf, 
list-subtype-bag, 
no_repeats_wf, 
equal_functionality_wrt_subtype_rel2, 
no_repeats-strong-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
dependent_set_memberEquality, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
independent_pairFormation, 
productEquality, 
cumulativity, 
intEquality, 
axiomEquality, 
dependent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageElimination, 
dependent_pairFormation, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[A,B:Type].
    \mforall{}n:\mBbbN{}.  UnorderedCombination(n;A)  \msubseteq{}r  UnorderedCombination(n;B)  supposing  strong-subtype(A;B)
Date html generated:
2017_10_01-AM-09_05_34
Last ObjectModification:
2017_07_26-PM-04_45_45
Theory : bags
Home
Index