Nuprl Lemma : strong-continuous-dep-isect
∀A:Type. ∀G:T:Type ⟶ A ⟶ Type. ((∀a:A. Continuous+(T.G[T;a]))
⇒ Continuous+(T.x:A ⋂ G[T;x]))
Proof
Definitions occuring in Statement :
dep-isect: x:A ⋂ B[x]
,
strong-type-continuous: Continuous+(T.F[T])
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
strong-type-continuous: Continuous+(T.F[T])
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
ext-eq: A ≡ B
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
Lemmas referenced :
nat_wf,
dep-isect_wf,
all_wf,
strong-type-continuous_wf,
false_wf,
le_wf,
dep-isect-subtype,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
lambdaEquality,
isectEquality,
cumulativity,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
applyEquality,
productElimination,
independent_pairEquality,
axiomEquality,
functionEquality,
universeEquality,
instantiate,
isectElimination,
dependent_set_memberEquality,
natural_numberEquality,
equalityTransitivity,
equalitySymmetry,
functionExtensionality,
dependentIntersection_memberEquality,
isect_memberEquality,
independent_functionElimination,
dependentIntersectionElimination
Latex:
\mforall{}A:Type. \mforall{}G:T:Type {}\mrightarrow{} A {}\mrightarrow{} Type. ((\mforall{}a:A. Continuous+(T.G[T;a])) {}\mRightarrow{} Continuous+(T.x:A \mcap{} G[T;x]))
Date html generated:
2018_05_21-PM-06_21_27
Last ObjectModification:
2018_05_19-PM-05_32_20
Theory : dependent!intersection
Home
Index