Nuprl Lemma : strong-continuous-dep-isect

A:Type. ∀G:T:Type ⟶ A ⟶ Type.  ((∀a:A. Continuous+(T.G[T;a]))  Continuous+(T.x:A ⋂ G[T;x]))


Proof




Definitions occuring in Statement :  dep-isect: x:A ⋂ B[x] strong-type-continuous: Continuous+(T.F[T]) so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s1;s2] all: x:A. B[x] implies:  Q strong-type-continuous: Continuous+(T.F[T]) uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  nat_wf dep-isect_wf all_wf strong-type-continuous_wf false_wf le_wf dep-isect-subtype equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation isect_memberFormation introduction cut independent_pairFormation lambdaEquality isectEquality cumulativity extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality productElimination independent_pairEquality axiomEquality functionEquality universeEquality instantiate isectElimination dependent_set_memberEquality natural_numberEquality equalityTransitivity equalitySymmetry functionExtensionality dependentIntersection_memberEquality isect_memberEquality independent_functionElimination dependentIntersectionElimination

Latex:
\mforall{}A:Type.  \mforall{}G:T:Type  {}\mrightarrow{}  A  {}\mrightarrow{}  Type.    ((\mforall{}a:A.  Continuous+(T.G[T;a]))  {}\mRightarrow{}  Continuous+(T.x:A  \mcap{}  G[T;x]))



Date html generated: 2018_05_21-PM-06_21_27
Last ObjectModification: 2018_05_19-PM-05_32_20

Theory : dependent!intersection


Home Index