Nuprl Lemma : strong-continuous-dep-isect
∀A:Type. ∀G:T:Type ⟶ A ⟶ Type.  ((∀a:A. Continuous+(T.G[T;a])) 
⇒ Continuous+(T.x:A ⋂ G[T;x]))
Proof
Definitions occuring in Statement : 
dep-isect: x:A ⋂ B[x]
, 
strong-type-continuous: Continuous+(T.F[T])
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
strong-type-continuous: Continuous+(T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
Lemmas referenced : 
nat_wf, 
dep-isect_wf, 
all_wf, 
strong-type-continuous_wf, 
false_wf, 
le_wf, 
dep-isect-subtype, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality, 
isectEquality, 
cumulativity, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
universeEquality, 
instantiate, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
dependentIntersection_memberEquality, 
isect_memberEquality, 
independent_functionElimination, 
dependentIntersectionElimination
Latex:
\mforall{}A:Type.  \mforall{}G:T:Type  {}\mrightarrow{}  A  {}\mrightarrow{}  Type.    ((\mforall{}a:A.  Continuous+(T.G[T;a]))  {}\mRightarrow{}  Continuous+(T.x:A  \mcap{}  G[T;x]))
Date html generated:
2018_05_21-PM-06_21_27
Last ObjectModification:
2018_05_19-PM-05_32_20
Theory : dependent!intersection
Home
Index