Nuprl Lemma : sqle-append-nil-if-has-value

[t:Base]. t ≤ [] supposing (t)↓  (is-list(t))↓


Proof




Definitions occuring in Statement :  is-list: is-list(t) append: as bs nil: [] has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] implies:  Q base: Base sqle: s ≤ t
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T append: as bs list_ind: list_ind uall: [x:A]. B[x] prop: uimplies: supposing a is-list: is-list(t) sq_stable: SqStable(P) nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q nat_plus: + has-value: (a)↓ cons: [a b] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pi2: snd(t) it: nil: [] squash: T guard: {T}
Lemmas referenced :  has-value_wf_base is-exception_wf base_wf sq_stable__sqle nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_subtype_base fun_exp0_lemma strictness-apply bottom_diverge decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma fun_exp_unroll_1 has-value-implies-dec-ispair list_ind_cons_lemma has-value-implies-dec-isaxiom list_ind_nil_lemma
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction exceptionSqequal hypothesis axiomSqleEquality sqequalRule divergentSqle sqleReflexivity thin instantiate extract_by_obid sqequalHypSubstitution isectElimination baseApply closedConclusion baseClosed hypothesisEquality isect_memberFormation independent_functionElimination compactness setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation applyEquality because_Cache unionElimination dependent_set_memberEquality callbyvalueReduce sqleRule imageMemberEquality imageElimination functionEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[t:Base].  t  \mleq{}  t  @  []  supposing  (t)\mdownarrow{}  {}\mRightarrow{}  (is-list(t))\mdownarrow{}



Date html generated: 2019_10_16-AM-11_38_07
Last ObjectModification: 2018_08_15-PM-03_49_28

Theory : eval!all


Home Index