Nuprl Lemma : compose-fpf_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[f:x:A fp-> B[x]]. ∀[C:Type]. ∀[a:A ⟶ (C?)]. ∀[b:C ⟶ A].
  compose-fpf(a;b;f) ∈ y:C fp-> B[b y] supposing ∀y:A. ((↑isl(a y))  ((b outl(a y)) y ∈ A))


Proof




Definitions occuring in Statement :  compose-fpf: compose-fpf(a;b;f) fpf: a:A fp-> B[a] outl: outl(x) assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q unit: Unit member: t ∈ T apply: a function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a compose-fpf: compose-fpf(a;b;f) fpf: a:A fp-> B[a] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] top: Top prop: isl: isl(x) compose: g fpf-domain: fpf-domain(f) pi1: fst(t) pi2: snd(t) iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] cand: c∧ B squash: T true: True guard: {T} rev_implies:  Q
Lemmas referenced :  fpf_wf equal_wf all_wf iff_weakening_equal list_wf true_wf squash_wf l_member_wf member_map_filter outl_wf assert_wf unit_wf2 isl_wf top_wf subtype-fpf2 fpf-domain_wf mapfilter_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_pairEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache applyEquality sqequalRule lambdaEquality hypothesis independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality setElimination rename setEquality productElimination dependent_functionElimination independent_functionElimination dependent_set_memberEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality functionEquality axiomEquality unionEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[C:Type].  \mforall{}[a:A  {}\mrightarrow{}  (C?)].  \mforall{}[b:C  {}\mrightarrow{}  A].
    compose-fpf(a;b;f)  \mmember{}  y:C  fp->  B[b  y]  supposing  \mforall{}y:A.  ((\muparrow{}isl(a  y))  {}\mRightarrow{}  ((b  outl(a  y))  =  y))



Date html generated: 2018_05_21-PM-09_27_54
Last ObjectModification: 2018_02_09-AM-10_23_23

Theory : finite!partial!functions


Home Index