Nuprl Lemma : compose-fpf_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[f:x:A fp-> B[x]]. ∀[C:Type]. ∀[a:A ⟶ (C?)]. ∀[b:C ⟶ A].
  compose-fpf(a;b;f) ∈ y:C fp-> B[b y] supposing ∀y:A. ((↑isl(a y)) ⇒ ((b outl(a y)) = y ∈ A))
Proof
Definitions occuring in Statement : 
compose-fpf: compose-fpf(a;b;f), 
fpf: a:A fp-> B[a], 
outl: outl(x), 
assert: ↑b, 
isl: isl(x), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
unit: Unit, 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
union: left + right, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
compose-fpf: compose-fpf(a;b;f), 
fpf: a:A fp-> B[a], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
top: Top, 
prop: ℙ, 
isl: isl(x), 
compose: f o g, 
fpf-domain: fpf-domain(f), 
pi1: fst(t), 
pi2: snd(t), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
squash: ↓T, 
true: True, 
guard: {T}, 
rev_implies: P ⇐ Q
Lemmas referenced : 
fpf_wf, 
equal_wf, 
all_wf, 
iff_weakening_equal, 
list_wf, 
true_wf, 
squash_wf, 
l_member_wf, 
member_map_filter, 
outl_wf, 
assert_wf, 
unit_wf2, 
isl_wf, 
top_wf, 
subtype-fpf2, 
fpf-domain_wf, 
mapfilter_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_pairEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
setEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
functionEquality, 
axiomEquality, 
unionEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[C:Type].  \mforall{}[a:A  {}\mrightarrow{}  (C?)].  \mforall{}[b:C  {}\mrightarrow{}  A].
    compose-fpf(a;b;f)  \mmember{}  y:C  fp->  B[b  y]  supposing  \mforall{}y:A.  ((\muparrow{}isl(a  y))  {}\mRightarrow{}  ((b  outl(a  y))  =  y))
Date html generated:
2018_05_21-PM-09_27_54
Last ObjectModification:
2018_02_09-AM-10_23_23
Theory : finite!partial!functions
Home
Index