Nuprl Lemma : fpf-cap-single1
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[x:A]. ∀[v,z:Top].  (x : v(x)?z ~ v)
Proof
Definitions occuring in Statement : 
fpf-single: x : v, 
fpf-cap: f(x)?z, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
top: Top, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
fpf-single: x : v, 
fpf-cap: f(x)?z, 
fpf-dom: x ∈ dom(f), 
pi1: fst(t), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
deq: EqDecider(T), 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
eqof: eqof(d), 
bor: p ∨bq, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A
Lemmas referenced : 
fpf_ap_pair_lemma, 
deq_member_cons_lemma, 
deq_member_nil_lemma, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
top_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
universeEquality, 
isect_memberFormation, 
sqequalAxiom
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x:A].  \mforall{}[v,z:Top].    (x  :  v(x)?z  \msim{}  v)
Date html generated:
2018_05_21-PM-09_24_47
Last ObjectModification:
2018_02_09-AM-10_20_44
Theory : finite!partial!functions
Home
Index