Nuprl Lemma : fpf-cap-wf-univ
∀[A:Type]. ∀[f:a:A fp-> Type]. ∀[eq:EqDecider(A)]. ∀[x:A]. ∀[z:Type].  (f(x)?z ∈ Type)
Proof
Definitions occuring in Statement : 
fpf-cap: f(x)?z, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
fpf-cap: f(x)?z, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
prop: ℙ
Lemmas referenced : 
deq_wf, 
fpf_wf, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
bool_wf, 
fpf-ap_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
cumulativity, 
instantiate, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
lambdaFormation, 
voidElimination, 
voidEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[f:a:A  fp->  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x:A].  \mforall{}[z:Type].    (f(x)?z  \mmember{}  Type)
Date html generated:
2018_05_21-PM-09_17_57
Last ObjectModification:
2018_02_09-AM-10_16_48
Theory : finite!partial!functions
Home
Index