Nuprl Lemma : fpf-cap-wf-univ
∀[A:Type]. ∀[f:a:A fp-> Type]. ∀[eq:EqDecider(A)]. ∀[x:A]. ∀[z:Type]. (f(x)?z ∈ Type)
Proof
Definitions occuring in Statement :
fpf-cap: f(x)?z
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
fpf-cap: f(x)?z
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
top: Top
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
prop: ℙ
Lemmas referenced :
deq_wf,
fpf_wf,
fpf-dom_wf,
subtype-fpf2,
top_wf,
bool_wf,
fpf-ap_wf,
equal-wf-T-base,
assert_wf,
bnot_wf,
not_wf,
eqtt_to_assert,
uiff_transitivity,
eqff_to_assert,
assert_of_bnot,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
hypothesis,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
because_Cache,
extract_by_obid,
cumulativity,
instantiate,
lambdaEquality,
applyEquality,
independent_isectElimination,
lambdaFormation,
voidElimination,
voidEquality,
baseClosed,
unionElimination,
equalityElimination,
productElimination,
independent_functionElimination,
dependent_functionElimination
Latex:
\mforall{}[A:Type]. \mforall{}[f:a:A fp-> Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[x:A]. \mforall{}[z:Type]. (f(x)?z \mmember{} Type)
Date html generated:
2018_05_21-PM-09_17_57
Last ObjectModification:
2018_02_09-AM-10_16_48
Theory : finite!partial!functions
Home
Index