Nuprl Lemma : fpf-cap_functionality_wrt_sub
∀[A:Type]. ∀[d1,d2,d3,d4:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[f,g:a:A fp-> B[a]]. ∀[x:A]. ∀[z:B[x]].
  (f(x)?z = g(x)?z ∈ B[x]) supposing ((↑x ∈ dom(f)) and f ⊆ g)
Proof
Definitions occuring in Statement : 
fpf-sub: f ⊆ g, 
fpf-cap: f(x)?z, 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
and: P ∧ Q, 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
implies: P ⇒ Q, 
top: Top, 
all: ∀x:A. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
fpf-cap: f(x)?z, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
pi2: snd(t), 
fpf-ap: f(x), 
cand: A c∧ B, 
guard: {T}, 
fpf-sub: f ⊆ g, 
false: False, 
not: ¬A
Lemmas referenced : 
equal_wf, 
assert_of_bnot, 
eqff_to_assert, 
uiff_transitivity, 
eqtt_to_assert, 
not_wf, 
bnot_wf, 
equal-wf-T-base, 
bool_wf, 
deq_wf, 
fpf_wf, 
fpf-sub_wf, 
top_wf, 
subtype-fpf2, 
fpf-dom_wf, 
assert_wf, 
fpf-dom_functionality2
Rules used in proof : 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
equalityElimination, 
unionElimination, 
baseClosed, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
lambdaFormation, 
independent_isectElimination, 
functionExtensionality, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
universeIsType, 
Error :memTop, 
lambdaFormation_alt, 
inhabitedIsType, 
lambdaEquality_alt
Latex:
\mforall{}[A:Type].  \mforall{}[d1,d2,d3,d4:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g:a:A  fp->  B[a]].  \mforall{}[x:A].  \mforall{}[z:B[x]].
    (f(x)?z  =  g(x)?z)  supposing  ((\muparrow{}x  \mmember{}  dom(f))  and  f  \msubseteq{}  g)
Date html generated:
2020_05_20-AM-09_02_24
Last ObjectModification:
2020_01_25-AM-11_42_15
Theory : finite!partial!functions
Home
Index