Nuprl Lemma : fpf-join-ap-left
∀[A:Type]. ∀[B,C:A ⟶ Type]. ∀[eq:EqDecider(A)]. ∀[f:a:A fp-> B[a]]. ∀[g:a:A fp-> C[a]]. ∀[x:A].
  f ⊕ g(x) = f(x) ∈ B[x] supposing ↑x ∈ dom(f)
Proof
Definitions occuring in Statement : 
fpf-join: f ⊕ g, 
fpf-ap: f(x), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
fpf-ap: f(x), 
fpf-join: f ⊕ g, 
pi2: snd(t), 
fpf-cap: f(x)?z, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
top: Top, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff
Lemmas referenced : 
assert_wf, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
fpf_wf, 
deq_wf, 
bool_wf, 
fpf-ap_wf, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
functionExtensionality, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B,C:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[g:a:A  fp->  C[a]].  \mforall{}[x:A].
    f  \moplus{}  g(x)  =  f(x)  supposing  \muparrow{}x  \mmember{}  dom(f)
Date html generated:
2018_05_21-PM-09_21_48
Last ObjectModification:
2018_02_09-AM-10_18_27
Theory : finite!partial!functions
Home
Index