Nuprl Lemma : fpf-union-compatible_symmetry
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[C:Type].
  ∀eq:EqDecider(A). ∀f,g:x:A fp-> B[x] List. ∀R:(C List) ⟶ C ⟶ 𝔹.
    (fpf-union-compatible(A;C;x.B[x];eq;R;f;g) ⇒ fpf-union-compatible(A;C;x.B[x];eq;R;g;f)) 
  supposing ∀a:A. (B[a] ⊆r C)
Proof
Definitions occuring in Statement : 
fpf-union-compatible: fpf-union-compatible(A;C;x.B[x];eq;R;f;g), 
fpf: a:A fp-> B[a], 
list: T List, 
deq: EqDecider(T), 
bool: 𝔹, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
fpf-union-compatible: fpf-union-compatible(A;C;x.B[x];eq;R;f;g), 
or: P ∨ Q, 
and: P ∧ Q, 
guard: {T}, 
cand: A c∧ B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
exists: ∃x:A. B[x], 
top: Top
Lemmas referenced : 
l_member_wf, 
fpf-ap_wf, 
list_wf, 
not_wf, 
assert_wf, 
subtype_rel_list, 
equal_wf, 
or_wf, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
fpf-union-compatible_wf, 
bool_wf, 
fpf_wf, 
deq_wf, 
all_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
rename, 
lambdaFormation, 
independent_functionElimination, 
unionElimination, 
productElimination, 
inrFormation, 
independent_pairFormation, 
productEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
applyEquality, 
functionExtensionality, 
because_Cache, 
independent_isectElimination, 
inlFormation, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[C:Type].
    \mforall{}eq:EqDecider(A).  \mforall{}f,g:x:A  fp->  B[x]  List.  \mforall{}R:(C  List)  {}\mrightarrow{}  C  {}\mrightarrow{}  \mBbbB{}.
        (fpf-union-compatible(A;C;x.B[x];eq;R;f;g)  {}\mRightarrow{}  fpf-union-compatible(A;C;x.B[x];eq;R;g;f)) 
    supposing  \mforall{}a:A.  (B[a]  \msubseteq{}r  C)
Date html generated:
2018_05_21-PM-09_18_19
Last ObjectModification:
2018_02_09-AM-10_17_04
Theory : finite!partial!functions
Home
Index