Nuprl Lemma : subtype-fpf-cap-top
∀[T,X:Type]. ∀[eq:EqDecider(X)]. ∀[f,g:x:X fp-> Type]. ∀[x:X]. f(x)?T ⊆r g(x)?Top supposing g ⊆ f
Proof
Definitions occuring in Statement :
fpf-sub: f ⊆ g
,
fpf-cap: f(x)?z
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
top: Top
,
universe: Type
Definitions unfolded in proof :
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
top: Top
,
fpf-cap: f(x)?z
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
prop: ℙ
,
fpf-sub: f ⊆ g
,
cand: A c∧ B
,
not: ¬A
,
false: False
Lemmas referenced :
fpf-dom_wf,
subtype-fpf2,
top_wf,
bool_wf,
fpf-ap_wf,
equal-wf-T-base,
assert_wf,
bnot_wf,
not_wf,
eqtt_to_assert,
uiff_transitivity,
eqff_to_assert,
assert_of_bnot,
equal_wf,
fpf-cap_wf,
fpf-sub_wf,
fpf_wf,
deq_wf,
subtype_rel_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
applyEquality,
instantiate,
because_Cache,
sqequalRule,
lambdaEquality,
universeEquality,
hypothesis,
independent_isectElimination,
lambdaFormation,
isect_memberEquality,
voidElimination,
voidEquality,
equalityTransitivity,
equalitySymmetry,
baseClosed,
isect_memberFormation,
unionElimination,
equalityElimination,
productElimination,
independent_functionElimination,
dependent_functionElimination,
axiomEquality,
hyp_replacement,
applyLambdaEquality
Latex:
\mforall{}[T,X:Type]. \mforall{}[eq:EqDecider(X)]. \mforall{}[f,g:x:X fp-> Type]. \mforall{}[x:X]. f(x)?T \msubseteq{}r g(x)?Top supposing g \msubseteq{} f
Date html generated:
2018_05_21-PM-09_19_21
Last ObjectModification:
2018_02_09-AM-10_17_32
Theory : finite!partial!functions
Home
Index