Nuprl Lemma : add-indices_wf

[T:Type]. ∀[L:T List].  (add-indices(L) ∈ (ℕ||L|| × T) List)


Proof




Definitions occuring in Statement :  add-indices: add-indices(L) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T add-indices: add-indices(L) int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T
Lemmas referenced :  list_wf upto_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf length_wf int_seg_wf map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis productEquality because_Cache lambdaEquality independent_pairEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (add-indices(L)  \mmember{}  (\mBbbN{}||L||  \mtimes{}  T)  List)



Date html generated: 2016_05_15-PM-04_25_43
Last ObjectModification: 2016_01_16-AM-11_12_59

Theory : general


Home Index