Nuprl Lemma : assert-slow-int-palindrome-test
∀[L:ℤ List]. uiff(↑slow-int-palindrome-test(L);rev(L) = L ∈ (ℤ List))
Proof
Definitions occuring in Statement : 
slow-int-palindrome-test: slow-int-palindrome-test(L)
, 
reverse: rev(as)
, 
list: T List
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
slow-int-palindrome-test: slow-int-palindrome-test(L)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
deq: EqDecider(T)
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal-wf-base, 
list_wf, 
list_subtype_base, 
int_subtype_base, 
iff_weakening_uiff, 
assert_wf, 
list-deq_wf, 
int-deq_wf, 
deq_wf, 
reverse_wf, 
deq_property, 
assert_witness, 
uiff_wf, 
slow-int-palindrome-test_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
equalitySymmetry, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
because_Cache, 
addLevel, 
productElimination, 
lambdaEquality, 
setElimination, 
rename, 
independent_functionElimination, 
cumulativity, 
instantiate, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity
Latex:
\mforall{}[L:\mBbbZ{}  List].  uiff(\muparrow{}slow-int-palindrome-test(L);rev(L)  =  L)
Date html generated:
2018_05_21-PM-09_02_04
Last ObjectModification:
2017_07_26-PM-06_25_04
Theory : general
Home
Index