Nuprl Lemma : branch-ifthenelse
∀[b:𝔹]. ∀[P,Q:Top].  (if x:↑b then P else Q fi  ~ if b then P else Q fi )
Proof
Definitions occuring in Statement : 
branch: if p:P then A[p] else B fi , 
bool-decider: bool-decider(b), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
branch: if p:P then A[p] else B fi , 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A
Lemmas referenced : 
top_wf, 
bool_wf, 
bool-decider_wf, 
decidable_wf, 
assert_wf, 
equal_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination
Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[P,Q:Top].    (if  x:\muparrow{}b  then  P  else  Q  fi    \msim{}  if  b  then  P  else  Q  fi  )
Date html generated:
2017_10_01-AM-09_12_56
Last ObjectModification:
2017_07_26-PM-04_48_35
Theory : general
Home
Index