Nuprl Lemma : branch-ifthenelse

[b:𝔹]. ∀[P,Q:Top].  (if x:↑then else fi  if then else fi )


Proof




Definitions occuring in Statement :  branch: if p:P then A[p] else fi  bool-decider: bool-decider(b) assert: b ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T branch: if p:P then A[p] else fi  all: x:A. B[x] implies:  Q decidable: Dec(P) or: P ∨ Q prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  top_wf bool_wf bool-decider_wf decidable_wf assert_wf equal_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache lambdaFormation unionElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation promote_hyp instantiate cumulativity voidElimination

Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[P,Q:Top].    (if  x:\muparrow{}b  then  P  else  Q  fi    \msim{}  if  b  then  P  else  Q  fi  )



Date html generated: 2017_10_01-AM-09_12_56
Last ObjectModification: 2017_07_26-PM-04_48_35

Theory : general


Home Index