Nuprl Lemma : compat-append
∀[T:Type]. ∀as,cs,bs,ds:T List.  (as @ bs || cs @ ds 
⇒ as || cs)
Proof
Definitions occuring in Statement : 
compat: l1 || l2
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
compat: l1 || l2
, 
or: P ∨ Q
, 
guard: {T}
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
compat_wf, 
append_wf, 
nil_iseg, 
iseg_wf, 
nil_wf, 
cons_wf, 
list_ind_cons_lemma, 
compat-cons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
independent_functionElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
universeEquality, 
inlFormation, 
inrFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}as,cs,bs,ds:T  List.    (as  @  bs  ||  cs  @  ds  {}\mRightarrow{}  as  ||  cs)
Date html generated:
2016_05_15-PM-03_49_59
Last ObjectModification:
2015_12_27-PM-01_22_42
Theory : general
Home
Index