Nuprl Lemma : compat-append

[T:Type]. ∀as,cs,bs,ds:T List.  (as bs || cs ds  as || cs)


Proof




Definitions occuring in Statement :  compat: l1 || l2 append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] compat: l1 || l2 or: P ∨ Q guard: {T} append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B
Lemmas referenced :  list_induction all_wf list_wf compat_wf append_wf nil_iseg iseg_wf nil_wf cons_wf list_ind_cons_lemma compat-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis functionEquality independent_functionElimination rename because_Cache dependent_functionElimination universeEquality inlFormation inrFormation isect_memberEquality voidElimination voidEquality productElimination independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}as,cs,bs,ds:T  List.    (as  @  bs  ||  cs  @  ds  {}\mRightarrow{}  as  ||  cs)



Date html generated: 2016_05_15-PM-03_49_59
Last ObjectModification: 2015_12_27-PM-01_22_42

Theory : general


Home Index