Nuprl Lemma : cont-induction-factorial

n:ℕ(∃x:{ℤ((n)! x ∈ ℤ)})


Proof




Definitions occuring in Statement :  fact: (n)! nat: all: x:A. B[x] sq_exists: x:{A| B[x]} int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T subtype_rel: A ⊆B nat_plus: + so_apply: x[s] implies:  Q all: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: sq_exists: x:{A| B[x]} sq_stable: SqStable(P) squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties sq_stable__equal le_wf false_wf primrec-induction-factorial nat_wf nat_plus_wf fact_wf equal_wf sq_exists_wf cont-induction-ext
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule lambdaEquality intEquality hypothesisEquality hypothesis applyEquality setElimination rename independent_functionElimination dependent_functionElimination dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation addEquality equalityTransitivity equalitySymmetry introduction imageMemberEquality baseClosed imageElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache

Latex:
\mforall{}n:\mBbbN{}.  (\mexists{}x:\{\mBbbZ{}|  ((n)!  =  x)\})



Date html generated: 2016_05_15-PM-04_09_29
Last ObjectModification: 2016_01_16-AM-11_05_12

Theory : general


Home Index