Nuprl Lemma : primrec-induction-factorial

n:ℕ(∃x:ℤ [((n)! x ∈ ℤ)])


Proof




Definitions occuring in Statement :  fact: (n)! nat: all: x:A. B[x] sq_exists: x:A [B[x]] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T subtype_rel: A ⊆B nat_plus: + so_apply: x[s] implies:  Q all: x:A. B[x] prop: sq_exists: x:A [B[x]] has-value: (a)↓ uimplies: supposing a nat: not: ¬A ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  primrec-induction sq_exists_wf equal-wf-T-base fact_wf nat_plus_wf int_subtype_base nat_wf fact0_redex_lemma equal-wf-base value-type-has-value int-value-type fact_unroll_1 nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf add-subtract-cancel equal_wf squash_wf true_wf iff_weakening_equal decidable__le intformnot_wf int_formula_prop_not_lemma le_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule lambdaEquality intEquality hypothesisEquality hypothesis applyEquality setElimination rename independent_functionElimination lambdaFormation because_Cache dependent_set_memberFormation natural_numberEquality baseClosed callbyvalueReduce independent_isectElimination addEquality multiplyEquality dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality productElimination dependent_set_memberEquality unionElimination

Latex:
\mforall{}n:\mBbbN{}.  (\mexists{}x:\mBbbZ{}  [((n)!  =  x)])



Date html generated: 2018_05_21-PM-06_59_42
Last ObjectModification: 2017_07_26-PM-05_02_10

Theory : general


Home Index