Nuprl Lemma : decidable__connection
∀[T:Type]. ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ finite-type(T) 
⇒ (∀f:T ⟶ T. ∀a,b:T.  Dec(∃n:ℕ. (b = (f^n a) ∈ T))))
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T)
, 
fun_exp: f^n
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
orbit-exists, 
finite-type_wf, 
all_wf, 
decidable_wf, 
equal_wf, 
decidable_functionality, 
exists_wf, 
nat_wf, 
fun_exp_wf, 
l_member_wf, 
decidable__l_member
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
functionEquality, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
applyEquality, 
independent_pairFormation, 
because_Cache
Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  finite-type(T)  {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}a,b:T.    Dec(\mexists{}n:\mBbbN{}.  (b  =  (f\^{}n  a)))))
Date html generated:
2016_05_15-PM-04_11_49
Last ObjectModification:
2015_12_27-PM-03_00_19
Theory : general
Home
Index