Nuprl Lemma : decidable__connection

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  finite-type(T)  (∀f:T ⟶ T. ∀a,b:T.  Dec(∃n:ℕ(b (f^n a) ∈ T))))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) fun_exp: f^n nat: decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] prop: iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  orbit-exists finite-type_wf all_wf decidable_wf equal_wf decidable_functionality exists_wf nat_wf fun_exp_wf l_member_wf decidable__l_member
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination dependent_functionElimination productElimination functionEquality sqequalRule lambdaEquality universeEquality applyEquality independent_pairFormation because_Cache

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  finite-type(T)  {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}a,b:T.    Dec(\mexists{}n:\mBbbN{}.  (b  =  (f\^{}n  a)))))



Date html generated: 2016_05_15-PM-04_11_49
Last ObjectModification: 2015_12_27-PM-03_00_19

Theory : general


Home Index