Nuprl Lemma : destructor-sum

[F,G:Type ⟶ Type].  (destructor{i:l}(T.F[T])  destructor{i:l}(T.G[T])  destructor{i:l}(T.F[T] G[T]))


Proof




Definitions occuring in Statement :  destructor: destructor{i:l}(T.F[T]) uall: [x:A]. B[x] so_apply: x[s] implies:  Q function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T destructor: destructor{i:l}(T.F[T]) so_apply: x[s] so_lambda: λ2x.t[x] all: x:A. B[x] decomp: decomp{i:l}(S.F[S];T;x) constructor: Constr(T.F[T]) subtype_rel: A ⊆B ap-con: ap-con(con;L) prop:
Lemmas referenced :  subtype_rel_wf base_wf decomp_wf list_wf equal_wf ap-con_wf destructor_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename introduction sqequalHypSubstitution isect_memberEquality cut isectElimination setElimination thin dependent_set_memberEquality because_Cache hypothesis extract_by_obid cumulativity hypothesisEquality equalityTransitivity equalitySymmetry functionEquality applyEquality functionExtensionality universeEquality sqequalRule lambdaEquality unionElimination productElimination dependent_pairEquality inlEquality isectEquality setEquality addLevel levelHypothesis unionEquality instantiate dependent_functionElimination independent_functionElimination inrEquality

Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (destructor\{i:l\}(T.F[T])  {}\mRightarrow{}  destructor\{i:l\}(T.G[T])  {}\mRightarrow{}  destructor\{i:l\}(T.F[T]  +  G[T]))



Date html generated: 2018_05_21-PM-08_45_07
Last ObjectModification: 2017_07_26-PM-06_08_53

Theory : general


Home Index