Nuprl Lemma : destructor-sum
∀[F,G:Type ⟶ Type].  (destructor{i:l}(T.F[T]) 
⇒ destructor{i:l}(T.G[T]) 
⇒ destructor{i:l}(T.F[T] + G[T]))
Proof
Definitions occuring in Statement : 
destructor: destructor{i:l}(T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
destructor: destructor{i:l}(T.F[T])
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
decomp: decomp{i:l}(S.F[S];T;x)
, 
constructor: Constr(T.F[T])
, 
subtype_rel: A ⊆r B
, 
ap-con: ap-con(con;L)
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_wf, 
base_wf, 
decomp_wf, 
list_wf, 
equal_wf, 
ap-con_wf, 
destructor_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
rename, 
introduction, 
sqequalHypSubstitution, 
isect_memberEquality, 
cut, 
isectElimination, 
setElimination, 
thin, 
dependent_set_memberEquality, 
because_Cache, 
hypothesis, 
extract_by_obid, 
cumulativity, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
unionElimination, 
productElimination, 
dependent_pairEquality, 
inlEquality, 
isectEquality, 
setEquality, 
addLevel, 
levelHypothesis, 
unionEquality, 
instantiate, 
dependent_functionElimination, 
independent_functionElimination, 
inrEquality
Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (destructor\{i:l\}(T.F[T])  {}\mRightarrow{}  destructor\{i:l\}(T.G[T])  {}\mRightarrow{}  destructor\{i:l\}(T.F[T]  +  G[T]))
Date html generated:
2018_05_21-PM-08_45_07
Last ObjectModification:
2017_07_26-PM-06_08_53
Theory : general
Home
Index