Nuprl Lemma : equipollent-nat-powered2
∃f:n:ℕ ⟶ ℕ ⟶ (ℕ^n + 1). ∀n:ℕ. Bij(ℕ;(ℕ^n + 1);f n)
Proof
Definitions occuring in Statement : 
power-type: (T^k), 
biject: Bij(A;B;f), 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
equipollent: A ~ B, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
pi1: fst(t)
Lemmas referenced : 
all_wf, 
equal_wf, 
biject_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
power-type_wf, 
nat_wf, 
exists_wf, 
equipollent-nat-powered
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
rename, 
sqequalSubstitution, 
dependent_pairFormation, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
functionEquality, 
hypothesis, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
lambdaFormation, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mexists{}f:n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  (\mBbbN{}\^{}n  +  1).  \mforall{}n:\mBbbN{}.  Bij(\mBbbN{};(\mBbbN{}\^{}n  +  1);f  n)
Date html generated:
2016_05_15-PM-06_07_12
Last ObjectModification:
2016_01_16-PM-00_44_16
Theory : general
Home
Index