Nuprl Lemma : equipollent-nat-powered2
∃f:n:ℕ ⟶ ℕ ⟶ (ℕ^n + 1). ∀n:ℕ. Bij(ℕ;(ℕ^n + 1);f n)
Proof
Definitions occuring in Statement :
power-type: (T^k)
,
biject: Bij(A;B;f)
,
nat: ℕ
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
equipollent: A ~ B
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
pi1: fst(t)
Lemmas referenced :
all_wf,
equal_wf,
biject_wf,
le_wf,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
nat_properties,
power-type_wf,
nat_wf,
exists_wf,
equipollent-nat-powered
Rules used in proof :
cut,
lemma_by_obid,
sqequalHypSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
rename,
sqequalSubstitution,
dependent_pairFormation,
lambdaEquality,
applyEquality,
hypothesisEquality,
thin,
isectElimination,
functionEquality,
hypothesis,
because_Cache,
dependent_set_memberEquality,
addEquality,
setElimination,
natural_numberEquality,
dependent_functionElimination,
unionElimination,
independent_isectElimination,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
lambdaFormation,
productElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination
Latex:
\mexists{}f:n:\mBbbN{} {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} (\mBbbN{}\^{}n + 1). \mforall{}n:\mBbbN{}. Bij(\mBbbN{};(\mBbbN{}\^{}n + 1);f n)
Date html generated:
2016_05_15-PM-06_07_12
Last ObjectModification:
2016_01_16-PM-00_44_16
Theory : general
Home
Index