Nuprl Lemma : equipollent-nat-powered
∀n:ℕ. ℕ ~ (ℕ^n + 1)
Proof
Definitions occuring in Statement : 
power-type: (T^k), 
equipollent: A ~ B, 
nat: ℕ, 
all: ∀x:A. B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ge: i ≥ j , 
power-type: (T^k), 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
equipollent: A ~ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
inv_funs: InvFuns(A;B;f;g), 
tidentity: Id{T}, 
identity: Id, 
compose: f o g, 
guard: {T}, 
squash: ↓T, 
true: True, 
sq_type: SQType(T), 
code-pair: code-pair(a;b), 
triangular-num: t(n)
Lemmas referenced : 
equipollent_wf, 
nat_wf, 
power-type_wf, 
subtract_wf, 
subtract-add-cancel, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
equipollent-type-unit-pair, 
eq_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
general_arith_equation1, 
equal_wf, 
coded-pair_wf, 
fun_with_inv_is_bij2, 
add-subtract-cancel, 
biject-inverse, 
biject_wf, 
code-pair_wf, 
inv_funs_wf, 
code-coded-pair, 
subtype_base_sq, 
set_subtype_base, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
product_subtype_base, 
decidable__equal_int, 
coded-code-pair, 
zero-le-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
rename, 
setElimination, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
hypothesisEquality, 
natural_numberEquality, 
sqequalRule, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
productElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
impliesFunctionality, 
productEquality, 
spreadEquality, 
independent_pairEquality, 
functionExtensionality, 
instantiate, 
cumulativity, 
applyLambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}n:\mBbbN{}.  \mBbbN{}  \msim{}  (\mBbbN{}\^{}n  +  1)
Date html generated:
2018_05_21-PM-08_14_26
Last ObjectModification:
2017_07_26-PM-05_49_18
Theory : general
Home
Index