Nuprl Lemma : equipollent-nat-powered3
∃f:n:ℕ ⟶ ℕ ⟶ (ℕ^n + 1). ∀n:ℕ. ∃g:(ℕ^n + 1) ⟶ ℕ. InvFuns(ℕ;(ℕ^n + 1);f n;g)
Proof
Definitions occuring in Statement : 
power-type: (T^k)
, 
inv_funs: InvFuns(A;B;f;g)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
biject-inverse2, 
inv_funs_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
power-type_wf, 
exists_wf, 
all_wf, 
nat_wf, 
equipollent-nat-powered2
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
lambdaFormation, 
hypothesis, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
applyEquality, 
independent_functionElimination
Latex:
\mexists{}f:n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  (\mBbbN{}\^{}n  +  1).  \mforall{}n:\mBbbN{}.  \mexists{}g:(\mBbbN{}\^{}n  +  1)  {}\mrightarrow{}  \mBbbN{}.  InvFuns(\mBbbN{};(\mBbbN{}\^{}n  +  1);f  n;g)
Date html generated:
2016_05_15-PM-06_07_23
Last ObjectModification:
2016_01_16-PM-00_45_06
Theory : general
Home
Index