Nuprl Lemma : extract-decider-of-decidable-prop
∀[T:Type]. ∀[P:T ⟶ ℙ].  ((∀t:T. ((P t) ∨ (¬(P t)))) 
⇒ (∃f:T ⟶ 𝔹. ∀t:T. (↑(f t) 
⇐⇒ P t)))
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
isl: isl(x)
, 
not: ¬A
, 
false: False
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
Lemmas referenced : 
all_wf, 
or_wf, 
not_wf, 
isl_wf, 
assert_wf, 
assert_witness, 
iff_wf, 
and_wf, 
equal_wf, 
assert_elim, 
bfalse_wf, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
rename, 
dependent_pairFormation, 
independent_pairFormation, 
comment, 
because_Cache, 
introduction, 
independent_functionElimination, 
productElimination, 
promote_hyp, 
unionElimination, 
voidEquality, 
inrEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
natural_numberEquality, 
dependent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}t:T.  ((P  t)  \mvee{}  (\mneg{}(P  t))))  {}\mRightarrow{}  (\mexists{}f:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}t:T.  (\muparrow{}(f  t)  \mLeftarrow{}{}\mRightarrow{}  P  t)))
Date html generated:
2016_05_15-PM-03_14_26
Last ObjectModification:
2015_12_27-PM-01_02_15
Theory : general
Home
Index