Nuprl Lemma : extract-decider-of-decidable-prop

[T:Type]. ∀[P:T ⟶ ℙ].  ((∀t:T. ((P t) ∨ (P t))))  (∃f:T ⟶ 𝔹. ∀t:T. (↑(f t) ⇐⇒ t)))


Proof




Definitions occuring in Statement :  assert: b bool: 𝔹 uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] subtype_rel: A ⊆B all: x:A. B[x] or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uimplies: supposing a isl: isl(x) not: ¬A false: False assert: b ifthenelse: if then else fi  btrue: tt true: True
Lemmas referenced :  all_wf or_wf not_wf isl_wf assert_wf assert_witness iff_wf and_wf equal_wf assert_elim bfalse_wf btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality rename dependent_pairFormation independent_pairFormation comment because_Cache introduction independent_functionElimination productElimination promote_hyp unionElimination voidEquality inrEquality independent_isectElimination equalityTransitivity equalitySymmetry voidElimination natural_numberEquality dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}t:T.  ((P  t)  \mvee{}  (\mneg{}(P  t))))  {}\mRightarrow{}  (\mexists{}f:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}t:T.  (\muparrow{}(f  t)  \mLeftarrow{}{}\mRightarrow{}  P  t)))



Date html generated: 2016_05_15-PM-03_14_26
Last ObjectModification: 2015_12_27-PM-01_02_15

Theory : general


Home Index