Nuprl Lemma : fast-mapfilter_wf

[A,B:Type]. ∀[L:A List]. ∀[p:{x:A| (x ∈ L)}  ⟶ 𝔹]. ∀[f:{x:A| (x ∈ L) ∧ (↑p[x])}  ⟶ B].
  (fast-mapfilter(p;f;L) ∈ List)


Proof




Definitions occuring in Statement :  fast-mapfilter: fast-mapfilter(p;f;L) l_member: (x ∈ l) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fast-mapfilter: fast-mapfilter(p;f;L) member: t ∈ T uall: [x:A]. B[x] prop: all: x:A. B[x] so_apply: x[s] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff
Lemmas referenced :  reduce_wf l_member_wf list_wf bool_wf eqtt_to_assert cons_wf assert_wf equal_wf nil_wf list-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setEquality cumulativity hypothesisEquality hypothesis lambdaEquality lambdaFormation setElimination rename applyEquality functionExtensionality dependent_functionElimination dependent_set_memberEquality unionElimination equalityElimination sqequalRule productElimination independent_isectElimination because_Cache productEquality independent_pairFormation equalityTransitivity equalitySymmetry independent_functionElimination functionEquality universeEquality isect_memberFormation axiomEquality isect_memberEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[L:A  List].  \mforall{}[p:\{x:A|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:A|  (x  \mmember{}  L)  \mwedge{}  (\muparrow{}p[x])\}    {}\mrightarrow{}  B].
    (fast-mapfilter(p;f;L)  \mmember{}  B  List)



Date html generated: 2018_05_21-PM-06_52_11
Last ObjectModification: 2017_07_26-PM-04_58_17

Theory : general


Home Index