Nuprl Lemma : filter_fseg

[T:Type]. ∀P:T ⟶ 𝔹. ∀L2,L1:T List.  (fseg(T;L1;L2)  fseg(T;filter(P;L1);filter(P;L2)))


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q fseg: fseg(T;L1;L2) exists: x:A. B[x] member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  length_wf_nat equal_wf nat_wf filter_wf5 subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf filter_append append_wf list_wf exists_wf fseg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut dependent_set_memberEquality hypothesis introduction extract_by_obid isectElimination cumulativity hypothesisEquality dependent_pairFormation applyEquality sqequalRule lambdaEquality setEquality independent_isectElimination setElimination rename because_Cache equalityTransitivity equalitySymmetry hyp_replacement Error :applyLambdaEquality,  functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L2,L1:T  List.    (fseg(T;L1;L2)  {}\mRightarrow{}  fseg(T;filter(P;L1);filter(P;L2)))



Date html generated: 2016_10_25-AM-10_45_27
Last ObjectModification: 2016_07_12-AM-06_55_17

Theory : general


Home Index