Nuprl Lemma : filter_fseg
∀[T:Type]. ∀P:T ⟶ 𝔹. ∀L2,L1:T List.  (fseg(T;L1;L2) 
⇒ fseg(T;filter(P;L1);filter(P;L2)))
Proof
Definitions occuring in Statement : 
fseg: fseg(T;L1;L2)
, 
filter: filter(P;l)
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
fseg: fseg(T;L1;L2)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
length_wf_nat, 
equal_wf, 
nat_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
filter_append, 
append_wf, 
list_wf, 
exists_wf, 
fseg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
dependent_set_memberEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
dependent_pairFormation, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L2,L1:T  List.    (fseg(T;L1;L2)  {}\mRightarrow{}  fseg(T;filter(P;L1);filter(P;L2)))
Date html generated:
2016_10_25-AM-10_45_27
Last ObjectModification:
2016_07_12-AM-06_55_17
Theory : general
Home
Index